Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

G. M. Golzar Hossain,* Afroza Banu and A. J. Amoroso

School of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales

Correspondence e-mail: acsbd@yahoo.com

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.055$
$w R$ factor $=0.144$
Data-to-parameter ratio $=16.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
trans-Bis(ethylenediamine)bis(sulfadiazinato)copper(II)

The structure of the title compound, trans- $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right.$ $\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\right)_{2}$], consists of neutral molecules. The Cu^{2+} ion occupies an inversion centre and exhibits an elongated distorted octahedral geometry, with two monodentate sulfadiazinate (sdz) anions and two bidentate ethylenediamine ligands. Both sdz ligands are N -coordinated via an N atom of the sulfonamide group. The crystal structure is stabilized by hydrogen bonds and weak van der Waals interactions.

Comment

In the structure of the title compound, (I), $\left[\mathrm{Cu}(\mathrm{sdz})_{2}(\mathrm{en})_{2}\right]$, the $\mathrm{Cu}^{\mathrm{II}}$ ion occupies an inversion centre and is octahedrally coordinated by two en and two sdz ligands, forming a CuN_{6} coordination environment. The en molecules act as bidentate ligands, forming two five-membered chelate rings with a trans arrangement. The structure has a Jahn-Teller-distorted octahedral geometry around the $\mathrm{Cu}^{\mathrm{II}}$ atom with four N atoms of the two chelating ethylenediamine molecules and two sulfonamide N atoms from sulfadiazine molecules completing the coordination of the elongated octahedral structure.

The two $\mathrm{Cu}-\mathrm{N}_{\mathrm{en}}$ bond distances are almost equivalent, but significantly shorter than the $\mathrm{Cu}-\mathrm{N}_{\mathrm{sdz}}$ bond distances, resulting in the formation of a distorted octahedral geometry elongated along the $\mathrm{Cu}-\mathrm{N}_{\mathrm{sdz}}$ bonds. Thus, the en N atoms form the equatorial plane of the coordination octahedron, while the sulfonamide N atoms of sdz occupy the axial positions.

The $\mathrm{Cu} 1-\mathrm{N} 1$ bond distances of 2.672 (2) \AA are elongated as a result of the Jahn-Teller effect. The bond lengths within the sulfadiazine and ethylenediamine are as expected. The $\mathrm{Cu}-\mathrm{N}$ distances of 2.005 (3) and 2.013 (3) \AA, involving the

Received 15 September 2006
Accepted 22 September 2006

The molecular structure, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. Symmetry code as in Table 1. Dashed lines indicate hydrogen bonds.

Figure 2
The molecular packing of (I) viewed along the b axis. Dashed lines indicate the hydrogen-bonding interactions.
ethylenediamine molecules, are comparable to the corresponding values 1.997 (3) and 2.001 (3) A (Lokaj et al., 1991), 2.033 (3) and 2.042 (3) A (Anacona et al., 2002), 1.996 (2) and 2.022 (3) A (Kovbasyuk et al., 1997), 2.007 (3)-2.024 (3) A (Kovbasyuk et al., 1997), 2.016 (2) and 2.019 (2) A (Fun et al., 2002), and 2.007 (3) and 2.010 (3) A (Kazak et al., 2004). The S1-O bond distances of 1.458 (3) and 1.449 (3) \AA are longer than the corresponding bonds in the pure sulfadiazine with values of 1.429 (2) and 1.437 (2) \AA.

The crystal structure of the complex exhibits numerous hydrogen bonds (Table 2). The amino H atoms form intramolecular hydrogen bonds with the sulfonyl O atoms, as illustrated in Fig. 1. The amine H atoms of the en ligands and terminal amino H are also involved in intermolecular hydrogen bonding with the sulfonyl O atoms of neighbouring sdz ligands (Fig. 2).

Experimental

The sodium salt of sulfadiazine (Nasdz) ($0.545 \mathrm{~g}, 2 \mathrm{mmol}$) was dissolved in 50 ml of hot methanol and a methanol solution $(10 \mathrm{ml})$ of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.171 \mathrm{~g}, 1 \mathrm{mmol})$ was added slowly with constant stirring on a hot-plate at 333 K ; a red precipitate was formed and the mixture was stirred for 6 h . The precipitate was filtered off and dried over silica gel. The precipitate was dissolved in a 1:10 mixture of ethylenediamine/water $(10 \mathrm{ml})$, stirred for 30 minutes. The solution was then filtered and left for crystallization; a week later, blue block
crystals were obtained, which were filtered off and dried over silica gel.

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\right]$

$$
Z=2
$$

$M_{r}=682.29$
Monoclinic, $P 2_{1} / n$
$D_{x}=1.569 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$a=10.8610$ (5) Å
$\mu=0.96 \mathrm{~mm}^{-1}$
$b=10.6329$ (4) \AA
$T=150$ (2) K
$c=12.5227$ (6) \AA
Block, blue
$\beta=93.302$ (2) ${ }^{\circ}$
$V=1443.77(11) \AA^{3}$
$0.15 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.870, T_{\text {max }}=0.910$
9385 measured reflections 3290 independent reflections 2428 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.089$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0579 P)^{2}\right. \\
& \quad+1.6363 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.77 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.50 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.672(2)$	$\mathrm{Cu} 1-\mathrm{N} 6$	$2.005(3)$
$\mathrm{Cu} 1-\mathrm{N} 5$	$2.013(3)$		
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	180	$\mathrm{~N} 1-\mathrm{Cu} 1-\mathrm{N} 6$	$89.68(10)$
$\mathrm{N} 5^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 5$	180	$\mathrm{~N} 5 \mathrm{i}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 6$	$95.10(12)$
$\mathrm{N} 6^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 6$	180	$\mathrm{~N} 5-\mathrm{Cu} 1-\mathrm{N} 6$	$84.90(12)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 5$	$94.80(10)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 5$	$85.20(10)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 6$	$90.32(10)$		

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 6-\mathrm{H} 6 B \cdots \mathrm{O} 1$	0.92	2.29	$3.068(4)$	142
$\mathrm{~N}^{\mathrm{H}}-\mathrm{H} 6 A \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.92	2.25	$3.021(4)$	141
$\mathrm{~N}^{\mathrm{H}} \mathrm{H} 5 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.92	2.15	$2.958(4)$	146

Symmetry code: (i) $-x+1,-y+1,-z+1$.
H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95$ and $0.99 \AA ; \mathrm{N}-\mathrm{H}=0.88$ and $0.92 \AA$, respectively, for H atoms on amino N4 (sulfadiazine), and N5 and N6 (ethylenediamine) atoms) and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 times $U_{\text {eq }}$ of their parent atoms.

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); soft-

metal-organic papers

ware used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the School of Chemistry, Cardiff University.

References

Anacona, J. R., Ramos, N., Delgado, G. D. D. \& Roque, E. M. (2002). J. Coord. Chem. 55, 901-908.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Fun, H.-K., Hao, Q.-L., Wu, J., Yang, X.-J., Lu, L.-D., Wang, X., Chantrapromma, S., Razak, I. A. \& Usman, A. (2002). Acta Cryst. C58, m87-m88.
Hooft, R. W. W. (1998). COLLECT. Bruker AXS Inc., Delft, The Netherlands.
Kazak, C., Yilmaz, V. T. \& Yazicilar, T. K. (2004). Acta Cryst. E60, m593-m595.
Kovbasyuk, L. A., Frisky, I. O., Kokozay, V. N. \& Iskenderov, T. S. (1997). Polyhedron, 16, 1723-172.
Lokaj, J., Gyerová, K., Sopková, A., Sivý, J., Kettman, V. \& Vrabel, V. (1991). Acta Cryst. C47, 2447-2448.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

